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Summary—The Manley-Rowe relations, originally derived for

noniiiear lumped circuit elementsj are generalized to include the

power flow in the fields produced in the presence of lossless, non-

linear media. The generalization is carried out first for nonlinear

anisotropic media with single-valued relations between the instan-

taneous ~ and ~, and R and %. The proof is extended to include

gyromagnetic media under small-signal excitation at the signal fre-

quency (but large excitation at the pump frequency). The relations

are applied to show under what conditions power gain can be

achieved with a three-frequency and a four-frequency excitation of

a ferrite. The form of the coupling coefficients in the electromagnetic

operation of a ferrite amplifier is shown to be a consequence of the

generalized Manley-Rowe relations.

I. INTRODUCTION

c

ONSIDERABLE attention has been given re-

cently to amplifiers that employ nonlinear elec-

tromagnetic media, are “pumped” at one fre-

quency, and provide gain at one or more frequencies.

Good noise performance at microwave frequencies, and

other advantages, can be expected from these ‘(para-

metric” amplifiers, as they are often called. As a specific

example of a parametric amplifier, Manley and Rowel

considered the nonlinear capacitor, and proved some

general relations among the powers flowing into the

capacitor terminals at several frequencies. Their results

are also applicable to lossless inductors. It is not obvious

however, how their power relations can be applied to

electromagnetic problems involving nonlinear aniso-

tropic electric and magnetic media. It is also not clear

whether their relations are still applicable to nonlinear,

nonreciprocal circuits. Devices containing nonlinear

gyromagnetic media have equivalent circuits that ex-

hibit nonreciprocal properties. In the construction of the

ferromagnetic microwave amplifier one employs just

such nonlinear media. Therefore, it seems necessary to

extend the Manley-Rowe relations to include the elec-

tromagnetic power flow of fields in Iossless nonlinear

media, and in media which exhibit gyromagnetic effects.

This paper is divided in four parts. First, we derive

two expressions for the power flow density (Poynting

vector) in nonlinear media at various frequencies. These

expressions are used as the basis of the generalization of

the Manley-Rowe relations.

Second, we study the relation between the magnetic

field intensity ~ and the magnetization ~ for Iossless

anisotropic magnetic media under the restriction that H
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be a single-valued function of ~.2 The same is done for

the relation between the electric field intensity Z and

the polarization ~ of a lossless anisotropic dielectric ma-

terial. These relations are then used in the proof of the

Manley-Rowe relations for lossless media with single-

valued relations between Z and ~, and E and ~.

Third, we apply the well-known relation between P

and ~ in a gyromagnetic medium to prove the Manley-

Rowe relations for lossless gyromagnetic media under

small-signal excitation (but, in general, under large ex-

citation at the pump frequency and its harmonics).

Finally, we apply the generalized Manley-Rowe rela-

tions to show under what conditions one can achieve

gain in a cavity loaded by a ferrite and resonant at the

pumping frequency, the signal frequency, and one

“idling” frequency. It is found that gain can only be

achieved if the idling frequency and signal frequency are

both below the pumping frequency. A similar study,

carried out for a device operating at the lpurnping fre-

quency, signal frequency, and two ‘(idling” frequencies,

shows that gain can be achieved at frequencies higher

than the pump frequency but less than twice the pump

frequency. It is shown that an interrelation exists be-

tween the coupling coefficients of the equations for the

“electromagnetic operation”$ of a three-frequency

(pump, signal, and idling frequency) ferrite amplifier.

This interrelation is a consequence of the generalized

Manley-Rowe relations.

II. GENERAL POWER RELATIONS IN

NONLINEAR MEDIA

Suppose that an excitation at two frequencies, ao and

al, is applied to a nonlinear medium. The nonlinear

medium produces, in general, fields at all frequencies

WWI +two, where m and n are all positive and negative

integers. (Components at negative frequencies have the

interpretation that is usual in complex Fourier series

expansions. ) Thus, the electric field at any point ? can

be expanded in the complex Fourier series,

‘(77 ~) = ~ ~~,~(~) ef(~”l+~”o) ~, (1)
m,%

where the m’s and m’s run over all integers from -– w

to + cc. Since E(?7 t)is a real vector, we conclude that

Em,. = (z_m,-n)*. (2)

2 We consider ~ to be a single valued function of ‘~, if ~(7, t)—
at the point ? and the time t depends only upon ~~(7, t) at the same

point and at the same time. ~(?, t)~s not suppose(i to depend upon

the time (or space) derivatives of M. For a linear rnecli:m this re-
striction is ea uivalent to the requirement that the reclproclt y refation
be fulfiiled. -

3 H. Suhl, “Theory of the ferromagnetic micrc,wave amplifier,”
J. AwJ. Plzys., vol. 28, pp. 122.5-1236; November, 1957.
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Similar expressions apply to the magnetic field P(?, t),

the polarization F(?, t), and the magnetization Z(F, t),

The time-dependent Maxwell equations can be split

into Fourier components (one set of equations for each

Fourier component). We have

Dot-multiplying (3) by

the complex conjugate of (4) by
—

mE~,n
7

mul + 7z6J0

and subtracting the two resulting equations, we obtain,

after adding over all m and n,

m=—co .7L=-CC

. .
+ j X X 772P.,.*“l%,., (5)

nk=-cc ‘72=-CC

——
where the summations over the products E~, m.E~,m*

and ~~,n. ~~,~+ cancel by virtue of (2) and by an

analogous relation for the Fourier components of the

magnetic field. Eq. (5) is one of the basic relations for

the power flow in nonlinear media which we use in de-

riving the generalization of the Manley-Rowe relations.

Indeed, in order to accomplish the generalization, we

only have to prove that the summations on the right-

hand side of (5) are zero for the Iossless media under

consideration.

An equation analogous to (5) can be derived by dot-

multiplying (3) by

—
nH~,n*

WZUl+ ?Wo‘

and the complex conjugate of (4) by

Again, subtracting the two resulting equations, and

adding over all m and n, we obtain

%=—m ‘n==-cu

III. PROOF OF THE MANLEY-ROWE RELATIONS

FOR LOSSLESS “RECIPROCAL” MEDIA

We call a medium “reciprocal” if a single-valued re-

lation exists between ~ and ~ on the one hand, and ~

and ~ on the other hand. The medium does not have to

be isotropic, i.e., ~ does not have to be parallel to

~, and ~ is not necessarily parallel to ~.

Let us study the relation between ~ and % that has

to hold in order to fulfill the requirement of losslessness.

The energy per unit volume supplied to the material in

order to produce the magnetization ~ is

_—
where ~ is considered as a function of ~, H(M). In-

tegral (7) has to be single-valued, independent of the

“path” in the space of the magnetization vector ~. If

~ is varied, but eventually brought back to its original

value, a closed path is described in the space of the

magnetization vector ~. The integral over the closed

path, ~~. d~, has to be zero if the medium is Iossless

and, therefore, no energy is lost in the magnetization.

We have

(8)

for an arbitrary path in the space of the magnetization

vector ~. This is possible if, and only if, 77 can be

written as the gradient (in the ~ space) of a potential

function U(2):

R = VJ,U(7F), (9)

where

Vaf = %z -+&- -H.-+.
x !4 2

In a similar way, for a lossless anisotropic dielectric

medium, we derive

E = VPV(P),

where

(10)

is the gradient in the space of the polarization vector,

~, in which we may represent ~ as a vector field.

First, let us consider the energy and power relations

in a Iossless magnetic material when two excitations at

the angular frequencies uo and W1 are applied to the ma-

terial. The time dependence of the field vectors then

contains components at frequencies mwl + nwo, where m

and n are (positive or negative) integers. At each point

in space we must have, for the magnetization vector,

Z = F jj 2iZm,ne~@~+”l), (11)
m=—cc ?2=-.m=—ca n=—.
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t = co,t ml = 27r-1

‘q = Wot coo= 27rfo

and

z.,. = (m_m,_.)*4

17m,nis a complex vector function of $ and q and of the

spatial coordinates ? = ?(x, y, z). The variables $ and q

can be considered as independent in some mathematical

operations. This means that ~ is considered as a func-

tion of ~ and q in the entire (-q Plane. If we plot each

vector component of Z($, q) as the third coordinate in

a Cartesian c~ordinate system (in which ~, q are the

other two coordinates) we obtain three surfaces above

the $-~ plane, one surface for each component of ~.

Let us now study the physical significance of these three

surfaces. Consider a physical process with particular

fundamental excitation frequencies al and uO. Then con-

sider the cuts of the three surfaces M,(z, q), MU($, q),

and M,($, V) with a plane perpendicular to the $-q

plane, passing through the origin with the slope

$/q = uI/tio. The curves thus obtained are plots of M.,

Iifu, and M, as functions of time for this particular

process. A plane with a different slope ~/q= 01’/uo’ pro-

duces, in general, different curves. These curves are the

plots of M., iilU, and ill. as functions of time for another

physical process, with the fundamental frequencies ml’

and tio’. This new process has the initial values, -M.(O, O),

M.(O, O), and M,(O, O) at t = O, in common with the

original process since ~(~, V) is a single-valued function

of ~ and rl. Thus, when we study ~(1, v) as a function of

~, ~ over the entire .&v plane we are studying an infinite

number of physical processes with different fundamental

frequencies OA and coo. All processes have the initial

value ~(0, O). The time dependence of any particular

process (with the frequencies w and w2) is singled out

through a cut by a plane perpendicular to the $-q

plane and intersecting the ~-q plane along a line

through the origin with a slope &/q= w/uo. For this

reason we shall call the line ~/~ = W/CJO the ‘(process

line. ” We make use of this picture, in particular, when

we are considering gyromagnetic media. Returning now

to the problem at hand, we recall that the relation be-

tween R and = is single-valued, by assumption. Hence

.—
E = H[M(g, q)]= R(&, q). (12)

H can be expanded in a similar Fourier series as ~:

where

T?m,n= (Z?_)” (14)

and

Dot-multiplying both sides of the complex conjugate of

(15) byjm~~,., and adding over all m and n, we obtain

m=—cc .=—m

The double summation under the integral of (16) can be

identified by comparing it with (1 1):

If we introduce this equation into (16), we have

m.

1 2U 2T
—

——

--s s

dq
4T2 o

dgp(f, q’) .;: . (17)
o

But d$(13~/d$) = d~, with q held constant. Further-

more, according to (9),

d~.~ = d~ V1.U(~) = dU(~~)

with q held constant. But ~ is a periodic function of $,

and U is a single-valued function of ~. Therefore,

We thus obtain

m=—cc n=—.

In a similar way we obtain

5 5 jn~m,.”an = o. (21)
m-co . . . .

These equations can now be used to derive the extension.

of the Manley-Rowe relations. Introducing (18) and

(2o) into (5),we obtain

In a similar way, when (19) and (21) are introduced into

(6) the result is
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Eqs. (22) and (23) are the generalizations of the Manley-

Rowe relations in differential form.

Let us now imagine that the device under considera-

tion is enclosed by a perfect conductor, except for the

openings provided by the feeding guides. Number the

various propagating modes in all the guides (each mode

in every guide is assigned a particular number) 1,

2, ...,;,... , N. Define, in the usual way, a voltage

amplitude V~,n,~ and current amplitude l~,~,i for each

frequency component mtil+nom of the iith mode. Now,

integrating over the entire volume of the device en-

closed by the perfect conductor and by the cross-section

planes of the guides, from (22) and (23), we obtain

These are the generalizations in equivalent-circuit ter-

minology of the Manley-Rowe relations for microwave

devices containing nonlinear anisotropic reciprocal

media.

IV. THE SMALL-SIGNAL MANLEY-ROWE RELATIONS

FOR GYROMAGNETIC MEDIA

We turn now to the derivation of the Manley-Rowe

relations for gyromagnetic media. For this case, only the

proof for small-signal excitation (but large @rnP excita-

tion) has been found. Since most analyses of gyromag-

netic media make use of the small-signal assumptions,

publication of the proof at this time seems justified.

The small-signal theory of parametric amplifiers

starts with the results of the (in general nonlinear)

analysis of the pump excitation in the absence of an

applied signal. Let us identify the frequencies al and COO

of Sections II and I I I with the pump frequency o+, and

signal frequency a., respectively. The pump excitation

produces excitations at the pump frequency tiP and all

its harmonics. A small applied signal produces excita-

tions at the sideband frequencies mu. +%u.. Among

these, only the sidebands for n = i- 1 are linearly related

to the applied signal amplitude. All higher order side-

bands, I n I >2, contain the applied signal amplitude

raised to the nth power and are, therefore, negligible

compared to the first order excitation ( [ n [ = 1) at small

applied signal levels.

With this recognition, (6) can be adapted directly to

the study of small signal power. Indeed, (6) contains

only products of the sideband-excitation amplitudes

(n #O). If these amplitudes are found from a small-

signal analysis to be correct within first order of the

applied signal amplitude, the expressions in (6) can be

found from them to be correct within second order. All

contributions of terms with I n I >1 are of higher order

than second and can be disregarded in a small-signal

analysis. Within the small-signal assumption we thus

obtain for (6)

— —
nEjn,n X H~,n*

V’ 5X,
m=-cc .==+1 mwp -j- PLUS .

cc

= – j ~ ~ n2E.,.. z,n*

m-m n=* 1

m=-+ n=*l

Eq. (24) is the small-signal counterpart of (6). Any

small-signal solution will have to satisfy this equation.

Eq. (5) does not have a small-signal counterpart since

it contains cross products of the pumping amplitudes.

Small-signal theory disregards the second order changes

in these quantities as caused by a small applied signal

excitation. However, such second order changes con-

tribute terms of second order to (5). Thus, small-signal

theory does not provide the information necessary to

use (5) up to second order.

We proceed now to prove the generalized, small-signal

Manley-Rowe relations for gyromagnetic media. For

this purpose, we must show that the right-hand side of

(24) is equal to zero if ~ and ~ on the one hand, and

~ and ~ on the other, fulfill the relations of gyromag-

netic media.

We assume that the dielectric characteristics of the

material are reciprocal (see Section III for the use of

“reciprocal” as applied to nonlinear media), For this

case, it has been proved, in general, that

(25)
m-w %=—cc

For a small applied signal, all terms in (25) with \ n I #1

are negligible, and thus we have

~?. .gl @~8”*”Em,n = 0,
(26)

Having proved that the second term on the right-hand

side of (24) is zero, we turn our attention to the first

term. We must pro~e that

C Z in~m,. Z.,.’ = O, (27)
‘m—-w %=* 1

subject to the condition that ~ and ~ must satisfy the

equation of a gyromagnetic medium. We have

ir=-’y(7izx7T), (28)

where Z and Z are the time-dependent magnetization

and magnetic field, containing both the large-signal and

small-signal parts.

First, consider the magnetization ~(t). It consists of

the large-signal part ~o($ produced by the pumping
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excitation. Aside from a time-average component, this

part has only Fourier components at COPand its har-

monics. The small perturbation ml(t) of ~(t), produced

by a small signal at the frequency w., has Fourier com-

ponents at mu~ +u,.

Thus

m(t) = m,(t) + z,(t), (29)

where

IiTo(t)= 2 ZTmeim”pt (30)
?n=-m

ml(t) = ~ ~ mm,.e~(~”+”s) t . (31)
m=—cc n=i 1

With an analogous separation of the magnetic field into

a small-signal part and a large-signal part, we obtain

for (28)

ti, = – ~(mo x 77, + m, x 770). (32)

Eq. (32) determines HI in terms of ml. Note, however,

that it does not yield the component of ~1 parallel to

~0, ~1’(, since that component cancels when it is cross-

multiplied by ~o. Thus, (32) gives a relation only for

PI1, the component of El perpendicular to EO. The

component ~1[ is entirely independent of ml. Let us

introduce, again, the variables

( = Wpt; ~ = W,t. (33)

In terms of these variables we may rewrite El formally

as a

The

function of & and q:

.

m=—m n=+ 1

time derivative of ml for any particular choice of

COPand w,, i.e., for any particular- “process-line” in the

.$-T plane, is

C31zl 8371
%1= Olp —+ (-d-.

t)g thl
(35)

We may now introduce (35) into (32), in order to obtain

~1 as a function of ~ and q. According to (30) and (33),

n=—w

Cross-multiplying (32) by Mo(~) and expressing ATo as a

function of ~ analogously to (36) we have

+ -v~o(’i)x [~l(t, v) x 770(01]. (37)

Eq. (37) gives the component of the small-signal H field

perpendicular to EO. Note that ~02 is a constant, inde-
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pendent of j. Indeed, from (28), applied to the pumping

excitation alone, we have

no = – ‘y(mo x 770)

or, if we use (36) and a corresponding equation for Po,

we obtain

L?mo(g)
— = – ?@Io(i) x ~o(o).‘p (3[

Dot-multiplying (38) by ~0, we have

(38)

13170(t) —
W* —. MO(&)= + Lo,;(uO’(g))= 0,

a.g

Thus, ~02 does not depend upon (.

The component of El parallel to ~0, H~U, is independ-

ent of ml. It can obviously be written as

77,11($,?J = mo(’w(t, V) (39)

where j($, q) is a periodic scalar function of ~ and T.

Having expressed all time functions as function of ~

and T, we are, ready now to construct the proof for (27)

analogously to the derivation of (17). We have

i z .jltmm,n”z2,.*
m=—m n=+ 1

If we split R,($, q) into its components parallel and

perpendicular to ~0, we can write for the integral on

the right-hand side of (40)

In the appendix, using (37) and (39), the proof is pre-

sented that the integrals on the right-hand side of (41)

equal zero. This completes the generalization of the

Manley-Rowe relations to gyromagnetic media under

small-signal excitation. From (24), for these we have

The integral form of (42) is obtained by integrating it

over a volume enclosed by the surface S

V. APPLICATION OF THE MANLEY-ROWE RIILATIONS

The Manley-Rowe relations indicate what devices

can be realized either by using nonlinear reciprocal or
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gyromagnetic media. Among the devices that are of in-

terest is the parametric amplifier. A particular version

of this is a device containing a nonlinear medium to

which power is suppliedd at the pump frequency. A sig-

nal is applied to it at a frequency co.. Other frequencies

are not produced directly but only through the non-

linear action of the medium.

Let us study first a particularly simple, but important,

case of a parametric amplifier in which the only fre-

quency components with a finite power flow are those

of the pump frequency, of the small signal, and of one

sideband, the “idling” frequency (either at the fre-

quency tip +u,, or at the frequency tip –~,). This can be

accomplished if the nonlinear medium is inside a cavity

that is resonant at as, u, and UD ~ w., but not at any

other of the frequencies mco~ +nti,. The small-signal

Manley-Rowe relation (43) then reduces to

$[EQ,lx 170,1* Z,*I x nl,*l*

Re + 1d~ = O, (44)
as cop + 6J8

in which the integration is carried over a surface en-

closing the nonlinear medium. The surface vector d~

points outward from the surface. Note that the power

flow at the pump frequency does not appear explicitly

in the small-signal expression (44).

We are interested in obtaining power gain at the sig-

nal frequency with no other power than the pump power

supplied to the medium. The relation

indicates that, at the (idling) frequency afl ~ u,, we ex-

tract power from, rather than supply it to, the medium,

Using inequality (45) in (44), we obtain

Thus, we get power out of the medium at the desired

frequency, u,, provided that 1) us <cop and 2) the side

band at which power is extracted from the medium is a

lower sideband at frequency o, –u, (see Fig. 1). How-

ever, if w,> UP and/or the other sideband that is used is

at UP +m., no power can be extracted from the medium.

This proves the following theorem.

Theorem

A small-signal parametric amplifier that uses a “re-

ciprocal)? or gyromagnetic medium cannot have power gain

at a fyequency higher than the pump frequency, if a jinite

power j70w is associated only with three frequencies ios, Un,

coP+ co,. However, this theorem does not entirely exclude

the possibility of gain at a signal frequency higher than

the pump frequency. Indeed, if we allow for finite am-

plitudes at four frequencies, aP, u,, coP+w,, and UP —co,,

4 In this sense the signal source does not supply any power to the
medium, since more power flows out of the medium at the signal fre-
quency than flows into it, if gain is to be obtained,

-R-L
Fig. l—Spectrum for three-frequency parametric device

with possibility of gain.

Fig. 2—Spectrum for four-frequency parametric device with gain.

then from (43), we obtain

Now, if we assume that u, <UP, but with Wp+a, as the

signal frequency, and u, and UP —u, as the idling fre-

quencies, we find that extraction of power from the

medium at frequency cofl —co, permits positive values of

the integral Re $~ X B* d~ at both frequencies u. and

UP+U, >WP. Thus, the Manley-Rowe relations do not

prohibit power gain at a frequency u, +u,. The spectrum

of the four frequencies that are employed is shown in

Fig. 2.

If, however, a, >cofl, then not all integrals Re

@~x ~+. d~ in (46) can be positive. Thus, power gain

is impossible at signal frequencies higher than twice the

pump frequency. We have thus proved the following

theorem.

Theorem

The generalized Manley-Rowe relations pe~mit power

gain in a parametric amplijier at a frequency u, -1-w. in the

range WP<UP +w~ < 2WP, if a finite power $OW is associated
wzth four frequencies, co~,WP—w8, cop+W8, and WP.

Now we turn to another application of the generalized

Manley-Rowe relations. Eq. (43) imposes restrictions
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upon the general form of the coupling equations for

cavity modes in the presence of ferrites. The limitations

on the length of this paper do not permit a detailed

derivation. A brief summary of the results obtained

should suffice. For this purpose we are going to consider

Suhl’s analysis’ as an example. Eqs. (13) and (14) of

Suh13 give the equations of (weak) coupling produced

by a ferrite sample between the amplitudes A, and A2 of

the resonant modes of a cavity at the frequencies w and

u2, where OJl+w2 = UP. These equations are

and

Consider, first, the integraud in (49) and use (37). Then

we have

C?liz,((g,77)
+ “/mO(&) [ml(t, v) x Eo(’!)] x ‘—

I%J }
. (50)

A glance at (34) shows that ~1(~, q) can be split into

~l(f, q) = fi+(.$)ei” + ti-($)e-j’, (51)

where
where h gives the (slow) time variation of the modes as

exp (M). It can be shown that (43) imposes on the cou-
.

FL+(t) = ~ ~%,+lej’”~
pling coefficients PIZ and PZ1 the restriction m=..

P12
—

s
hl’dv z p s hz’dn (47)

and
cc

@l cavity W2 czvity ~_(&) = ~ liZm,_le~@.

where hl and h~ are the normalized fields of the modes 1
?n=.~

and 2. Detailed calculations of the coupling coefficients, For the sake of brevity, we omit, henceforth, the ex-

as done by Suhl,3 confirm (47). plicit indication of arguments & and q. Let us consider

the integral over ( and q of the first term in (5o).

j VI. CONCLUSIONS 2T

SJ

Zr

(

8Z1 aml

It has been found that the electromagnetic Poynting II = df )dq ; -;> co,~o X — ~q— .
d(

(52)

vectors (Dertainin~ to various frequencies) of fields in
o 0

.. .
“reciprocal” media obey (22) and (23). When equivalent If we introduce (51) into (52) for ~1, we note that only

circuit terminology is introduced into the field problem, products of Z+ and i?_ will remain after integration of

relations result that are very similar in appearance to q over the periodic interval of V.

the Manley-Rowe relations.

s27rd~~-,Wp~O

(

dm–

A small-signal form of one of the generalized Manley- II = ~x%+–a;i~xM.

Rowe relations, (43), has been proved for gyromagnetic o )

media. The relation can be used to determine under

f

2r

what circumstances power gain can be expected from a = d( ~2Wp~o ; (i?Z- X ?%+). (53)

gyromagnetic medium under parametric excitation. The
o

same relation can also be used to predict the form of the Next, let us look at the integration over q of the sec-
equations for the coupling between cavity modes pro-

duced by a “parametrically” excited ferrite. It is worth
ond term in (50). We note that

mentioning that (43) can be used as the basis of a theory 1 3Z1

of mode coupling produced by a parametrically excited
—mo. (E1x77”)x—
yzo~

uniform ferrite rod in a uniform microwave structure.

This application of (43) is reminiscent of the use of the =

kinetic power theorem5 as the basis for the traveling- *[(~’”:)~~~o-(~o%)~l”~ol“4)
wave tube analysis.c

Integrating this term over one period of q, and using a

VII. APPENDIX
simple vector identity, we obtain

We shall prove that s2!T 2X
8ZI

2-2 = d~~ S[dq~o(~lXE.)X—
2T

M

27r 1
azl _

o yilloa od<dq—.HIII==() (48)
o 0 87 ——

s o2*d’ A+mo”wfoz=H+”):5L. J. Chu, “A kinetic power theorem, ” presented at 1951 IRE
Conf. on Electron Devices, Durham, N. H.; June, 1951.

e J. R. Pierce, “Coupling of modes of propagation, ” .7. AP@. 1+27rjZTo x (??7+x f%). no . (55)
Pkys., vol. 24, pp. 179–183; February, 1954.
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The first term on the right-hand side of (55) equals zero.

Combining (53) and (55), for the integral of (50) we

obtain

1
– y(~o X no). (in- X fi+) . (56)

However, if we use (38), we find that the integrand of

(56) reduces to a total differential

@Zo .; (m. x m+) – y(mo x 770) ~(m. x ?%+)

= up; (mom- x %+).

The integral over one period in ~ of a total derivative

with respect to ( is zero. Thus, we have proved the cor-

rectness of (49). Finally, we have to prove (48). First,

we note that El!! is parallel to ~0. Thus it is possible to

write Z1ll in the form

77111= Eo(L)j(t, n),

where ~(~, q) is an arbitrary scalar function

Thus,

: (m,) 77,11 = : (Zr,.mo)f(g, q) .

However, from (32) and (28), we have

(39)

of ~ and q.

(57)

32,.2WO+7FI.320= –@wIxno+7zox77J.Eo

– -/(370x 770).Z?l = o. (58)

Thus, for every ‘(process-line” originating at the source

of the ~-q plane, we have

i—)_
Wj-pao) +W&mzro)=o. (59)

Therefore ml oEO is constant along every process line.

At the origin, all process lines have the same value of

ml o~o. Hence, ml. ~. is constant throughout the en-

tire ~-q plane and

8(EI . mo)
o.

6’71 =

Accordingly, (57) equals zero. This proves the correct-

ness of (48).
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One Aspect of Minimum Noise Figure Microwave
Mixer Design*
SAUL M. BERGMANN~

Summary—A theory is derived which enables a direct measure-

ment of the optimum RF impedance for minimum noise figure. This

is achieved by an extension of Pound% method for loss measure-
ments. Also, an analysis is made of the relation between minimum
noise figure and maximum gain of the mixer represented as a two-

port network.
The procedure consists of first matching the RF signal input

terminals with short-circuited IF terminrds. Next open-circuited IF
terminal condkions are obtained by a circuit used by Pound. Then

* Manuscript received by the PGMTT, February 5, 1958; revised
manuscript received, April 3, 1958.

f Laboratory for Electronics, Boston, Mass.

a reference plane is determined coinciding by preference with the
plane of a maximum in the standing wave pattern of VSWR = r. A
discontinuity is Iinally introduced that would have a VSWR of
~ = ~~ and have its maximum or minimum at the plane of reference.

INTRODUCTION

M

I CROWAVE mixer performance has been

treated in the literature [1 ]– [3 ]. In this paper

the mixer is represented by a two-port network.

It is assumed that the network has been optimized on an

image-frequency termination basis. The aspect treated


