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Power-Flow Relations in Lossless Nonlinear Media*
H. A. HAUS}

Summary—The Manley-Rowe relations, originally derived for
nonlinear lumped circuit elements, are generalized to include the
power flow in the fields produced in the presence of lossless, non-
linear media. The generalization is carried out first for nonlinear
anisotropic media with single-valued relations between the instan-
taneous E and P, and H and . The proof is extended to include
gyromagnetic media under small-signal excitation at the signal fre-
quency (but large excitation at the pump frequency). The relations
are applied to show under what conditions power gain can be
achijeved with a three-frequency and a four-frequency excitation of
a ferrite. The form of the coupling coefficients in the electromagnetic
operation of a ferrite amplifier is shown to be a consequence of the
generalized Manley-Rowe relations.

I. INTRODUCTION

ONSIDERABLE attention has been given re-
C cently to amplifiers that employ nonlinear elec-
tromagnetic media, are “pumped” at one fre-
quency, and provide gain at one or more frequencies.
Good noise performance at microwave frequencies, and
other advantages, can be expected from these “para-
metric” amplifiers, as they are often called. As a specific
example of a parametric amplifier, Manley and Rowe?
considered the nonlinear capacitor, and proved some
general relations among the powers flowing into the
capacitor terminals at several frequencies. Their results
are also applicable to lossless inductors. It is not obvious
however, how their power relations can be applied to
electromagnetic problems involving nonlinear aniso-
tropic electric and magnetic media. It is also not clear
whether their relations are still applicable to nonlinear,
nonreciprocal circuits. Devices containing nonlinear
gyromagnetic media have equivalent circuits that ex-
hibit nonreciprocal properties. In the construction of the
ferromagnetic microwave amplifier one employs just
such nonlinear media. Therefore, it seems necessary to
extend the Manley-Rowe relations to include the elec-
tromagnetic power flow of fields in lossless nonlinear
media, and in media which exhibit gyromagnetic effects,
This paper is divided in four parts. First, we derive
two expressions for the power flow density (Poynting
vector) in nonlinear media at various frequencies. These
expressions are used as the basis of the generalization of
the Manley-Rowe relations.
Second, we study the relation between the magnetic
field intensity H and the magnetization 3 for lossless
anisotropic magnetic media under the restriction that &
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be a single-valued function of 3.2 The same is done for
the relation between the electric field intensity E and
the polarization P of a lossless anisotropic dielectric ma-
terial. These relations are then used in the proof of the
Manley-Rowe relations for lossless media with single-
valued relations between H and M, and E and P.

Third, we apply the well-known relation between H
and # in a gyromagnetic medium to prove the Manley-
Rowe relations for lossless gyromagnetic media under
small-signal excitation (but, in general, under large ex-
citation at the pump frequency and its harmonics).

Finally, we apply the generalized Manley-Rowe rela-
tions to show under what conditions one can achieve
gain in a cavity loaded by a ferrite and resonant at the
pumping frequency, the signal frequency, and one
“idling” frequency. It is found that gain can only be
achieved if the idling frequency and signal frequency are
both below the pumping frequency. A similar study,
carried out for a device operating at the pumping fre-
quency, signal frequency, and two “idling” frequencies,
shows that gain can be achieved at frequencies higher
than the pump frequency but less than twice the pump
frequency. It is shown that an interrelation exists be-
tween the coupling coefficients of the equations for the
“electromagnetic operation” of a three-frequency
(pump, signal, and idling frequency) ferrite amplifier.
This interrelation is a consequence of the generalized
Manley-Rowe relations.

II. GENERAL POWER RELATIONS IN
NONLINEAR MEDIA

Suppose that an excitation at two frequencies, w, and
w1, is applied to a nonlinear medium. The nonlinear
medium produces, in general, fields at all frequencies
mw; +nwy, where m and # are all positive and negative
integers. (Components at negative {requencies have the
interpretation that is usual in complex Fourier series
expansions.) Thus, the electric field at any point # can
be expanded in the complex Fourier series,

E(f’ t) = Z Em,n(i)ei(mwl_'_n%)tr (1)

m,n
where the m’s and #'s run over all integers from --
to + ». Since E(#, t) is a real vector, we conclude that

Enn = (E_m—n)*. 2

2 We consider H to be a single valued function of ]_W_, if T, 8
at the point 7 and the time ¢ depends only upon M (7, t) at the same
point and at the same time. H (7, ) is not supposed to depend upon

the time (or space) derivatives of M. For a linear medium this re-
striction is equivalent to the requirement that the reciprocity relation
be fulfitled.

3 H, Suhl, “Theory of the ferromagnetic microwave amplifier,”
J. Appl. Phys., vol. 28, pp. 1223-1236; November, 1957.
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Similar expressions apply to the magnetic field H(?, £),
the polarization P(#, £), and the magnetization M (F, £).
The time-dependent Maxwell equations can be split
into Fourier components (one set of equations for each
Fourier component). We have

VX Epp = — juolmeor + nwo) Han + Mm,n)  (3)
V X Hun = j(mer + n0) (ecEm,n &+ Prn). (4)
Dot-multiplying (3) by
mH o n*
mwy - nwo ’

the complex conjugate of (4) by
M B
-
mwy + nwo

and subtracting the two resulting equations, we obtain,
after adding over all m and #,

mEm,n X Hm,n*
mw1 + nwo

i Y Em

m=—o0 nN=—0

+i 2 2 mPnn*Enn ()

M=—o0 N——00

el o0

v 2 X

M==—00 N=—00

|

=

m,n Hm,n*

where the summations over the products E, .- Em,.*
and H,,. - Hn..* cancel by virtue of (2) and by an
analogous relation for the Fourier components of the
magnetic field. Eq. (5) is one of the basic relations for
the power flow in nonlinear media which we use in de-
riving the generalization of the Manley-Rowe relations.
Indeed, in order to accomplish the generalization, we
only have to prove that the summations on the right-
hand side of (5) are zero for the lossless media under
consideration.
An equation analogous to (5) can be derived by dot-
multiplying (3) by
WH o
T
mwy -+ nwo
and the complex conjugate of (4) by
o

mwy + nwo

Again, subtracting the two resulting equations, and
adding over all m and %, we obtain

co o0

ve 2 X

Mr=m00 N=—00

”Em,n X T{—m,n*

Moy + ey

= —7 >0 > uMmpHuo*

m=—oy N=—00

+i 22 20 #Pns* Enn  (6)

m=—w nN=—0w0
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I1I. ProoF OF THE MANLEY-ROWE RELATIONS
FOR LossLEss “REciprocAL” MEDIA

We call a medium “reciprocal” if a single-valued re-
lation exists between H and M on the one hand, and E
and P on the other hand. The medium does not have to
be isotropic, i.e., M does not have to be parallel to
H, and E is not necessarily parallel to P.

Let us study the relation between H and M that has
to hold in order to fulfill the requirement of losslessness.
The energy per unit volume supplied to the material in
order to produce the magnetization 7 is

f Oﬂﬁ-dj—vf, )

where H is considered as a function of M, H(M). In-
tegral (7) has to be single-valued, independent of the
“path” in the space of the magnetization vector M. If
1 is varied, but eventually brought back to its original
value, a closed path is described in the space of the
magnetization vector M. The integral over the closed
path, £ H-dM, has to be zero if the medium is lossless
and, therefore, no energy is lost in the magnetization.

We have
f T4l = 0, ®)

for an arbitrary path in the space of the magnetization
vector M. This is possible if, and only if, H can be
written as the gradient (in the 7 space) of a potential
function U(M):

0 = vy U(ID), 9
where
Vﬂ[:ix_—'_}—iy'-a_‘_*_iz i .
oM, M, IM,

In a similar way, for a lossless anisotropic dielectric
medium, we derive

E = VeV (P), (10)
where
3] 0 J
Vp = 7. + i, — 4+ 7,
OP, 4Py aP,

is the gradient in the space of the polarization vector,
P, in which we may represent E as a vector field.
First, let us consider the energy and power relations
in a lossless magnetic material when two excitations at
the angular frequencies wo and w; are applied to the ma-
terial. The time dependence of the field vectors then
contains components at frequencies mw; 4 nwy, where m
and # are (positive or negative) integers. At each point
in space we must have, for the magnetization vector,

M = i i ﬂm,nef(rrté-l—nn)’

Mm=—00 N=—00

(11
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where!
E = 60115 wp = 27rf1
n = (uolf Wy = 27Tf0
. 1 2% 27 _
Mm’n = — dnf dEM(é, n)e—i(m£+nn)
472 J g 0
and

Hm o (H——m,—n)*-

M. is a complex vector function of £ and 5 and of the
spatial coordinates #=#(x, v, ). The variables £ and 5
can be considered as independent! in some mathematical
operations. This means that 3 is considered as a func-
tion of & and n in the entire -y plane. If we plot each
vector component of M (£, 5) as the third coordinate in
a Cartesian coordinate system (in which £, 5 are the
other two coordinates) we obtain three surfaces above
the £ plane, one surface for each component of M.
Let us now study the physical significance of these three
surfaces. Consider a physical process with particular
fundamental excitation frequencies wy and we. Then con-
sider the cuts of the three surfaces M.{¢, v), My, ),
and M,(&, n) with a plane perpendicular to the &
plane, passing through the origin with the slope
£/n=w1/we. The curves thus obtained are plots of M.,
M,, and M, as functions of time for this particular
process. A plane with a different slope £/ =w,"/wo’ pro-
duces, in general, different curves. These curves are the
plots of M., M,, and M, as functions of time for another
physical process, with the fundamental frequencies w,’
and we’. This new process has the initial values, M.(0, 0),
M0, 0), and M.(0, 0) at =0, in common with the
original process since M (£, 1) is a single-valued function
of £ and 4. Thus, when we study M (£, 9) as a function of
£, over the entire £y plane we are studying an infinite
number of physical processes with different fundamental
frequencies w; and w,. All processes have the initial
value (0, 0). The time dependence of any particular
process (with the frequencies w; and wy) is singled out
through a cut by a plane perpendicular to the £
plane and intersecting the &5 plane along a line
through the origin with a slope &/9=w:/w,. For this
reason we shall call the line §/p=cw;/wo the “process
line.” We make use of this picture, in particular, when
we are considering gyromagnetic media. Returning now
to the problem at hand, we recall that the relation be-
tween H and M is single-valued, by assumption. Hence

H(E, ). (12)

H can be expanded in a similar Fourier series as M :

0
Z 67 (mg+nn) R

n=—0co

H=H[ME)] =

o= (13)

‘HMS

where

= (Hom-n)* (14)
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and

1 LG
Hypn =~— dn f dEH(E, n)eimktnn
0

4x? (15)

Dot-multipiying both sides of the complex conjugate of
(15) by jm M, ., and adding over all m and #, we obtain

) 0 1 27 2T

Z Z JmHp o *- M — dn

deH (&, )

i i JIM et mEFR) |

M=—00 N==00

(16)

The double summation under the integral of (16) can be
identified by comparing it with (11):

2 2> jmMa,

aa

eﬂ(mH-m;) R

If we introduce this equation into (16), we have

o o0

Z Z jmgm,n*'ﬂ—/[m,n

M=—00 N=—0oQ

LY f dETL(E, 7

472

But d&(dM/d¢) =dM, with 5 held constant. Further-
more, according to (9),

dM-H = dM -VyU(M) = dU(H)

with % held constant. But 37 is a periodic function of £,
and U is a single-valued function of M. Therefore,

dM M(2m.n)
f & B dU = 0.
0

M0, m)

We thus obtain

Z Z JmHm® Mn = 0. (18)
In a similar way we obtain

;i i G My = 0 (19)

> Y Pt T = 0. (21)

M=—00 N==—c0

These equations can now be used to derive the extension

of the Manley-Rowe relations. Introducing (18) and
(20) into (5),we obtain
d i —Em,n >< Hm,n*
v. 5 Dlme R (22)

mwi + nwo

M=o N=—w

In a similar way, when (19) and (21) are introduced into
(6) the result is
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b i Emnxﬁm,n*
v. 3 oS B 2 0,

M ne— P01 T HWg

(23)

Egs. (22) and (23) are the generalizations of the Manley-
Rowe relations in differential form.

Let us now imagine that the device under considera-
tion is enclosed by a perfect conductor, except for the
openings provided by the feeding guides. Number the
various propagating modes in all the guides (each mode
in every guide is assigned a particular number) 1,
2,+++,4,++-, N. Define, in the usual way, a voltage
amplitude V,...; and current amplitude L., for each
frequency component mw;+nwo of the ith mode. Now,
integrating over the entire volume of the device en-
closed by the perfect conductor and by the cross-section
planes of the guides, from (22) and (23), we obtain

d ad N mV‘mnzmnz
__________=0.
ma=z—:eon—§oz—-zl mwl""ﬂwo ’
Z Z i mnz mnzzo

w1 + nwo

Mmem—c0 n=—c0 t=1

These are the generalizations in equivalent-circuit ter-
minology of the Manley-Rowe relations for microwave
devices containing nonlinear anisotropic reciprocal
media.

1V. THE SMALL-SIGNAL MANLEY-ROWE RELATIONS
FOR GYROMAGNETIC MEDIA

We turn now to the derivation of the Manley-Rowe
relations for gyromagnetic media. For this case, only the
proof for small-signal excitation (but large pump excita-
tion) has been found. Since most analyses of gyromag-
netic media make use of the small-signal assumptions,
publication of the proof at this time seems justified.

The small-signal theory of parametric amplifiers
starts with the results of the (in general nonlinear)
analysis of the pump excitation in the absence of an
applied signal. Let us identify the frequencies w; and wo
of Sections II and 111 with the pump frequency w,, and
signal frequency ws, respectively. The pump excitation
produces excitations at the pump frequency w, and all
its harmonics. A small applied signal produces excita-
tions at the sideband frequencies mw,—4unw.. Among
these, only the sidebands for #= =+ 1 are linearly related
to the applied signal amplitude. All higher order side-
bands, Inl >2, contain the applied signal amplitude
raised to the u#th power and are, therefore, negligible
compared to the first order excitation ([ nl =1) at small
applied signal levels.

With this recognition, (6) can be adapted directly to
the study of small signal power. Indeed, (6) contains
only products of the sideband-excitation amplitudes
(n520). If these amplitudes are found from a small-
signal analysis to be correct within first order of the
applied signal amplitude, the expressions in (6) can be
found from them to be correct within second order. All
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contributions of terms with |#| >1 are of higher order
than second and can be disregarded in a small-signal
analysis. Within the small-signal assumption we thus
obtain for (6)

hd nFm,n >< ﬁm,n#<
v. Z Z o TR

Mm=—-00 n=tl

mw, + nws |

= __7 Z nﬂm,n'ﬁm,n*

o Fpn. (24)

M=o n=t1

Eq. (24) is the small-signal counterpart of (6). Any
small-signal solution will have to satisfy this equation.

Eq. (5) does not have a small-signal counterpart since
it contains cross products of the pumping amplitudes.
Small-signal theory disregards the second order changes
in these quantities as caused by a small applied signal
excitation. However, such second order changes con-
tribute terms of second order to (5). Thus, small-signal
theory does not provide the information necessary to
use (5) up to second order.

We proceed now to prove the generalized, small-signal
Manley-Rowe relations for gyromagnetic media. For
this purpose, we must show that the right-hand side of
(24) is equal to zero if E and P on the one hand, and
H and P on the other, fulfill the relations of gyromag-
netic media.

We assume that the dielectric characteristics of the
material are reciprocal (see Section III for the use of
“reciprocal” as applied to nonlinear media). For this
case, it has been proved, in general, that

(25)

For a small applied signal, all terms in (25) with | #| =1
are negligible, and thus we have

mon = 0.
m=—c0 Nn=+1

(26)

Having proved that the second term on the right-hand
side of (24) is zero, we turn our attention to the first
term. We must prove that

E 2 M Hun* =0,

m=—cw n=%1

(27)

subject to the condition that M and H must satisfy the
equation of a gyromagnetic medium. We have
M= — (M X H), (28)
where M and H are the time-dependent magnetization
and magnetic field, containing both the large-signal and
small-signal parts.
First, consider the magnetization M (f). It consists of
the large-signal part Mo(f) produced by the pumping
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excitation. Aside from a time-average component, this
part has only Fourier components at w, and its har-
monics. The small perturbation M (¢) of 3 (t), produced
by a small signal at the frequency w,, has Fourier com-
ponents at mw, +w,.

Thus
M) = Mo(t) + Ma(0), (29)
where
Mo(t) = D Meimont (30)
M@ = 2, > Mo peitmastnot, (31)

m=—c0 n=1t1

With an analogous separation of the magnetic field into

a small-signal part and a large-signal part, we obtain
for (28)
—].Wl =

— (Mo X T+ M1 X Ho). (32)

Eq. (32) determines H; in terms of #;. Note, however,
that it does not yield the component of H; parallel to
M., H,!, since that component cancels when it is cross-
multiplied by M. Thus, (32) gives a relation only for
H,*, the component of H; perpendicular to M, The
component H,! is entirely independent of ;. Let us
introduce, again, the variables

& = wyl;

In terms of these variables we may rewrite M, formally
as a function of £ and 7:

(33)

1 = wsl.

M= M) =

> 3 .

M=w—cn n=%1

gf (mé+nn)

(34)

The time derivative of M for any particular choice of
w, and w;, i.e., for any particular “process-line” in the
&y plane, is

oM, oM+
Wy Ws

a¢ oy

(35)

We may now introduce (35) into (32), in order to obtain
H, as a function of £ and 9. According to (30) and (33),
Mo(5).

> Mpeimt = (36)

n=—c0

Cross-multiplying (32) by M(£) and expressing Hy as a
function of £ analogously to (36) we have

—}_I'l'l'(é; 77)
1 17 M (£, ) OM (%, m)
Ty E;[Mm x [wp i T o ]
AT X [T, ) X To®)] |- 37

Eq. (37) gives the component of Ele small-signal H field
perpendicular to M. Note that M2 is a constant, inde-
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pendent of £. Indeed, from (28), applied to the pumping
excitation alone, we have

ﬁo = = ’Y(Mo X ﬁo)

or, if we use (36) and a corresponding equation for H,,
we obtain

O o(%) — —
wp Py = — y(Mo(&) X Holf))- (38)
Dot-multiplying (38) by M,, we have
937 (E) 7 J0
= mw—f?ww=a

Thus, M ,* does not depend upon &.
The component of H; parallel to Mo, Hi!, is independ-
ent of M. It can obviously be written as

Hil(g, n) = Mo(&)f ()

where f(£, 1) is a periodic scalar function of £ and .
Having expressed all time functions as function of &

and 7, we are ready now to construct the proof for (27)

analogously to the derivation of (17). We have

> > inMon Hun

m=—w n=11

(39)

27

= dt dnH(E, ) Z E ]an i (mttnn)
47 m=—cw n=tl
”dg %d e 2§ (40)
] iy,
471'2 0 0 (91] ' ‘\

If we split Hi(§, ) into its components parallel and
perpendicular to M,, we can write for the integral on
the right—hand side of (40)

H = —— dn————— HiL

0
1 2
+~f&
4rtJ 0
In the appendix, using (37) and (39), the proof is pre-
sented that the integrals on the right-hand side of (41)
equal zero. This completes the generalization of the

Manley-Rowe relations to gyromagnetic media under
small-signal excitation. From (24), for these we have

had nEm,n X Hm,n*
V. Z Z r T

m=—o0 n=:1 mw, '+' Hwg

oM,
d,, Ry s X}
on

(41)

= 0. (42)

The integral form of (42) is obtained by interating it
over a volume enclosed by the surface S

& nE—m,n X —Em,n*
2 29—

Mmoo k1 mwp 1 1w,

-dS == (43)
V. APPLICATION OF THE MANLEY-ROWE RELATIONS

The Manley-Rowe relations indicate what devices
can be realized either by using nonlinear reciprocal or
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gyromagnetic media. Among the devices that are of in-
terest is the parametric amplifier. A particular version
of this is a device containing a nonlinear medium to
which power is supplied* at the pump frequency. A sig-
nal is applied to it at a frequency w,. Other frequencies
are not produced directly but only through the non-
linear action of the medium.

Let us study first a particularly simple, but important,
case of a parametric amplifier in which the only fre-
quency components with a finite power flow are those
of the pump frequency, of the small signal, and of one
sideband, the ¢“idling” frequency (either at the fre-
quency w,~+w,, or at the frequency w,—w,). This can be
accomplished if the nonlinear medium is inside a cavity
that is resonant at w,, w; and w,tw, but not at any
other of the frequencies mw,~+nw,. The small-signal
Manley-Rowe relation (43) then reduces to

Eoi X Hor*  Eie1 X Hie*] -
Refli 0,1 0,1 + 1,41 1i1:|-dS=O, (44)

Ws Wp + ws

in which the integration is carried over a surface en-
closing the nonlinear medium. The surface vector dS§
points outward from the surface. Note that the power
flow at the pump frequency does not appear explicitly
in the small-signal expression (44).

We are interested in obtaining power gain at the sig-
nal frequency with no other power than the pump power
supplied to the medium. The relation

Ref —E_l,il X -jjl,il*'dg g 0 (4:5)
indicates that, at the (idling) frequency w, *w,, we ex-
tract power from, rather than supply it to, the medium,
Using inequality (45) in (44), we obtain

wp T ws — — __
F [H—«:I RefEO,l X Ho*-dS = 0.
Ws

Thus, we get power out of the medium at the desired
frequency, w,, provided that 1) w,<w, and 2) the side
band at which power is extracted from the medium is a
lower sideband at frequency w,—w; (see Fig. 1). How-
ever, if w;>w, and/or the other sideband that is used is
at w,+w,, no power can be extracted from the medium.
This proves the following theorem.

Theorem

A small-stgnal parametric amplifier that uses a “re-

ciprocal” or gyromagnetic medium cannot have power gain
at a frequency higher than the pump frequency, if a finite
power flow is associated only with three frequencies w,, w,,
w, +w,. However, this theorem does not entirely exclude
the possibility of gain at a signal frequency higher than
the pump frequency. Indeed, if we allow for finite am-
plitudes at four frequencies, w,, ws, wp-+ws, and w, —w,,

4 In this sense the signal source does not supply any power to the

medium, since more power flows out of the medium at the signal fre-
quency than flows into it, if gain is to be obtained.
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Fig. 1—Spectrum for three-frequency parametric device
with possibility of gain.

A

1 X

L
w=0 wg Wp-wg @y

L

wpuus

Fig. 2—Spectrum for four-frequency parametric device with gain.

then from (43), we obtain

Eo1 X Hot*
Re [f LA LI~ +}{
Ws

Ei1 X ﬁ1,1* _

Wy + Ws
El,—l X ﬁl‘—l* _
- — 4§ | = 0. (46)
Wp — Ws

Now, if we assume that w, <w,, but with w,+w, as the
signal frequency, and w, and w,—w, as the idling fre-
quencies, we find that extraction of power from the
medium at frequency w, —w, permits positive values of
the integral Re ¢ EXH*-dS at both frequencies w, and
wp+w;>w, Thus, the Manley-Rowe relations do not
prohibit power gain at a frequency w,+w;. The spectrum
of the four frequencies that are employed is shown in
Fig. 2.

If, however, w,>w,, then not all integrals Re
FEXT*-dS in (46) can be positive. Thus, power gain
is impossible at signal frequencies higher than twice the
pump frequency. We have thus proved the following
theorem.

Theorem

The generalized Manley-Rowe relations permit power
gain tn a parametric amplifier at a frequency w,+w, in the
range w, <w,+w, < 2w,, if a finite power flow is associated
with four frequencies, w;, W, —ws, w,+w;, and w,.

Now we turn to another application of the generalized
Manley-Rowe relations. Eq. (43) imposes restrictions
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upon the general form of the coupling equations for
cavity modes in the presence of ferrites. The limitations
on the length of this paper do not permit a detailed
derivation. A brief summary of the results obtained
should suffice. For this purpose we are going to consider
Suhl's analysis® as an example. Eqs. (13) and (14) of
Suhl? give the equations of (weak) coupling produced
by a {ferrite sample between the amplitudes 4; and 4, of
the resonant modes of a cavity at the frequencies w; and
w2, Where w;-+ws=w,. These equations are

(2)\ + 1> 4 - 11
e = p1ad 2*
. 1 1

wa
2N + *—> Ay = P21A1*
Q2

where A gives the (slow) time variation of the modes as
exp (Nf). It can be shown that (43) imposes on the cou-
pling coefficients p1» and pz the restriction

P12 P21
— hitdy = —

W1 ecavity [SF)

ho*dv

cavity

(47)

where %y and ks are the normalized fields of the modes 1
and 2. Detailed calculations of the coupling coefficients,
as done by Suhl? confirm (47).

| VI. CoNcLUSIONS

It has been found that the electromagnetic Poynting
vectors (pertaining to various frequencies) of fields in
“reciprocal” media obey (22) and (23). When equivalent
circuit terminology is introduced into the field problem,
relations result that are very similar in appearance to
the Manley-Rowe relations.

A small-signal form of one of the generalized Manley-
Rowe relations, (43), has been proved for gyromagnetic
media. The relation can be used to determine under
what circumstances power gain can be expected from a
gyromagnetic medium under parametric excitation. The
same relation can also be used to predict the form of the
equations for the coupling between cavity modes pro-
duced by a “parametrically” excited ferrite. It is worth
mentioning that (43) can be used as the basis of a theory
of mode coupling produced by a parametrically excited
uniform ferrite rod in a uniform microwave structure.
This application of (43) is reminiscent of the use of the
kinetic power theorem® as the basis for the traveling-
wave tube analysis.®

VII. APPENDIX

We shall prove that

27 on a:M‘l .
f dt dy -Hil =10
0 0 an

(48)

5 L. J. Chu, “A kinetic power theorem,” presented at 1951 IRE
Conf. on Electron Devices, Durham, N. H.; June, 1951.

s J. R. Pierce, “Coupling of modes of propagation,” J. 4ppl.
Phys., vol. 24, pp. 179-183; February, 1954.
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and

(49)

27 27 3H1
f déf dyp —— Ht = 0.
0 0 an

Consider, first, the integrand in (49) and use (37). Then
we have

oM, 1 1 —_—
Hit =— ﬂ:[;{wp]uo(f) X

M 1(E, ) OM (& n)
an v Mo

9
71/71('5; 7])
- w} . (50)

n

+ yMo(8) - [F1(E, m) X Ho(®)] X

A glance at (34) shows that M.(¢, 7) can be split into

Myt ) = ma(§)ei + m_(§)en, (51)
where
My(f) = D) My preis
and

Z Mm,—l

m=-—o0

eimE,

For the sake of brevity, we omit, henceforth, the ex-
plicit indication of arguments £ and 9. Let us consider
the integral over £ and 7 of the first term in (50).

, fdg - 1< A_lXaMl aM> .
LT Ty T\ T ey )

If we introduce (51) into (52) for My, we note that only
products of 7. and 7. will remain after integration of
7 over the periodic interval of 7.

]—W_ (6m_ < 6m+ % i >
O O
N 7T e

2w 2w]
Il = f df
0 ’YMU

o 2x7 .
- f df ———w, 0
0 ’YMO“
Next, let us look at the integration over 5 of the sec-
ond term in (50). We note that

0 % (717». X 1’1—’L+). (53)

i oM
—— Mo (M1 X Hy) X—
yM I

1 . 9M,
-l -
'y]V[02 (97]

Integrating this term over one period of 3, and using a
simple vector identity, we obtain

aj‘lil]

an

[Mo O)f —<— Ml)dn

+ Zﬂjﬁo X (M’/Z+ x WL_) . Wo_l . (55)

_. O,
o
dn

>MH] (54)

Iy =

1 2 - . _
— f an:WIU-(]Vfl X Hy) X
vYMag* J o

0
[Tt
0 vM
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The first term on the right-hand side of (55) equals zero.
Combining (53) and (55), for the integral of (50) we
obtain

or or 3H1 .
I1+I2=f dff dn — Ht
0 0 677

27j
’}’Mo2

f

2 _ a _ _
fo dé[pr s (- X )
—~ y(Mo X Hy) (M- X m)]. (56)

However, if we use (38), we find that the integrand of
(56) reduces to a total differential

0 — —
%MO'a—E (M- X i) — y(Mo X Ho) (- X i)
oy (Wi X )
-—-wpas 0~ wy).

The integral over one period in £ of a total derivative
with respect to £ is zero. Thus, we have proved the cor-
rectness of (49). Finally, we have to prove (48). First,
we note that Hy' is parallel to 7. Thus it is possible to
write H,! in the form

El” = MO(E)f(E; 77):

where f(£, 1) is an arbitrary scalar function of £ and .
Thus,

(39)

2 ary-me =2 @ . (57)
an an

However, from (32) and (28), we have
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erHo + Hrﬁo = — (M X Ho+ My X Hy)- M,
- ’Y(Mo X _ﬁo)'ﬂ_fl = Q. (58)

Thus, for every “process-line” originating at the source
of the £ plane, we have

4 . __ ¢ .
wpa—E(Ml'MU)‘l‘wsg;(Ml'Mo) = 0. (59)

Therefore M-, is constant along every process line.
At the origin, all process lines have the same value of
My M,y Hence, M1- M, is constant throughout the en-
tire £-n plane and
o(M, My)
on

0.

Accordingly, (57) equals zero. This proves the correct-
ness of (48).
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One Aspect of Minimum Noise Figure Microwave
Mixer Design*

SAUL M. BERGMANN

Summary—A theory is derived which enables a direct measure-
ment of the optimum RF impedance for minimum noise figure. This
is achieved by an extension of Pound’s method for loss measure-
ments. Also, an analysis is made of the relation between minimum
noise figure and maximum gain of the mixer represented as a two-
port network.,

The procedure consists of first matching the RF signal input
terminals with short-circuited IF terminals. Next open-circuited IF
terminal conditions are obtained by a circuit used by Pound. Then

* Manuscript received by the PGMTT, February 3, 1958; revised
manuscript received, April 3, 1958.
t Laboratory for Electronics, Boston, Mass.

a reference plane is determined coinciding by preference with the
plane of a maximum in the standing wave pattern of VSWR=r. A
discontinuity is finally introduced that would have a VSWR of
p=+/7 and have its maximum or minimum at the plane of reference.

INTRODUCTION

ICROWAVE mixer performance has been
treated in the literature [1]-[3]. In this paper

the mixer is represented by a two-port network.
It is assumed that the network has been optimized on an
image-frequency termination basis. The aspect treated



